If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2-10k+3=0
a = 2; b = -10; c = +3;
Δ = b2-4ac
Δ = -102-4·2·3
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{19}}{2*2}=\frac{10-2\sqrt{19}}{4} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{19}}{2*2}=\frac{10+2\sqrt{19}}{4} $
| (3x-7)(6x+4)=0 | | -3(k-9)-(-4k-9)=6 | | 2/m+1=4/m-3 | | -10|n-1|=-10 | | x/6-16=-13 | | k/3+15=6 | | 0.55x+0.05(14-x)=0.10(-63) | | a^2+1-3a=0 | | -5(-n+7)=-35+5n | | a+1÷a=3 | | 2x/5+3=10 | | 2m^2+2m2=0 | | 3x^2-36x+114=0 | | 5x-4+2(x+1=-10 | | 10x-7x-3=18 | | 4^x+2=8^2x | | m/2+4=13 | | 5x2+31.85x+110=0 | | 9^(2x-1)=36^x | | 26.55x=176 | | 4x^2+12x+19=0 | | 2y+4(3y-6)-2=32 | | 85x^2-63x+45=0 | | -4=3c+8 | | y^2-32y=64 | | 12+x/25+x=0.6 | | 17+2(4+2x2)=23 | | x(x+1.6)=5.97 | | 16-(4y)=-28 | | 1=3w+2 | | 2a+6=3a+-2 | | |2a+6|=|3a-2| |